
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Research and Development of a Linear Graph-based MATLAB
Toolbox

Eric McCormick, Haoxiang Lang
GRASP Laboratory

Faculty of Engineering and Applied Science
University of Ontario Institute of Technology

Oshawa, ON, Canada
eric.mccormick@uoit.net, haoxiang.lang@uoit.ca

Clarence W. de Silva
Industrial Automation Laboratory

Department of Mechanical Engineering
The University of British Columbia

Vancouver, BC, Canada
desilva@mech.ubc.ca

Abstract—This paper presents a new MATLAB-based
software toolbox, called LGtheory, which provides a robust and
automated method of evaluating Linear Graph (LG) models of
multi-domain engineering systems for the primary energy
domains (electrical, mechanical, hydraulic, and thermal). The
necessary background on the major concepts of LG approach is
presented along with a description of how the different LG
processes are automated using MATLAB software. These
processes are demonstrated through the extraction of the state-
space model of an example system consisting of a DC motor with
an inertial load. The results of this system output by the LGtheory
Toolbox are simulated and compared against the same model as
constructed in Simulink Simscape. This comparison demonstrates
that LGtheory is capable of producing accurate state-space models
of multi-domain dynamic systems.

Keywords—linear graph approach, state-space modeling, multi-
domain systems, multi-physics models, MATLAB toolbox, dynamic
system modeling, mechatronic systems.

I. INTRODUCTION
Multi-energy domain engineering systems play an

increasingly critical role in our daily lives. Systems that at one
point may have been purely mechanical or electrical in nature
may now span one or more additional energy domains. This can
be seen in classical fields of engineering such as automotive,
aviation, and power generation, but is also inherent in more
modern fields of engineering such as robotics, mechatronics,
and automation. While these multi-domain and multi-physics
systems allow for additional accuracy and more robust control,
they also add to the complexity of designing, modeling, and
simulating such systems.

The Linear Graph (LG) approach is a robust method of
multi-domain dynamic system modeling which is systematic,
unique, unified, and integrated. This means that the LG
approach provides a well-defined method across multiple
energy domains which produces a unique model of the evaluated
multi-domain system, using methodologies that are analogous
across the domains while considering the entire system
concurrently [1]. This method is derived from graph theory,
invented in 1736 by Leonhard Euler in order to solve a problem
known as the Seven Bridges of Königsberg [2]; however, the
formal LG approach itself was born through the work of Paynter
[3] in the 1950s and 1960s at the Massachusetts Institute of
Technology (MIT), as a precursor to his developments in bond
graphs. The first form of LG approach was applied to
engineering systems for the purpose of modeling large electrical
networks before extending these principles to other energy

domains in the 1960s; before this unification, modeling of
different energy domains would require vastly different
approaches [4]. Traditionally, while the LG approach is often
applied to the electrical, mechanical, hydraulic, and thermal
domains [5, 6, 7], this modeling method has also proven to be
suitable for a wide range of additional domains including
multibody [8], electrochemical [9], hydrodynamic [10], and
many more.

While the LG approach is relatively easy to perform
manually for low-order systems, it is beneficial to automate this
process in order to evaluate larger, more complex, multi-domain
systems. In the past, there have been some examples of software
packages with the purpose of evaluating LG models; these
programs include Lgraph, developed at MIT in the 1990s [11],
DynaFlexPro, developed at the University of Waterloo in the
mid 2000s [2, 8], and LG2ss developed at the University of
British Columbia in the 2010s [12]. Unfortunately, the Lgraph
software was only available on MIT workstation computers, and
was never released publically or further maintained for modern
operating systems. Likewise, DynaFlexPro has since been
incorporated into the MapleSim software package, and while the
underlying technology is based on LG approach, the program
does not represent systems in an LG format. LG2ss was an effort
in generalizing the LG approach, but it too was not refined or
made publicly available. The main goal of the MATLAB-based
LGtheory Toolbox presented in this paper is to provide a tool for
automated development and evaluation of LG models,
particularly facilitating education and research.

II. STATE-SPACE MODELING BY LG APPROACH

A. Background
The LG approach provides a method of simplifying complex

dynamic systems in the form of minimalistic graphical
representations in order to facilitate the creation of state-space
models. State-space modeling methods, such as the LG
approach, are often preferred by engineers over traditional
mathematical techniques as they provide a relatively simple and
algorithmic process which eliminates much of the complexity of
deriving such mathematical models.

An LG model represents a dynamic system as a collection of
interconnected lines and consists primarily of two main
components: branches, which are directional line segments that
represent either passive or source type system elements; and
nodes, which represent physical connections between system
elements.

978-1-7281-1846-8/19/$31.00 ©2019 IEEE

The 14th International Conference on
Computer Science & Education (ICCSE 2019)
August 19-21, 2019. Toronto, Canada

 942

WedB1.5

Two variable types are considered in the LG approach:
Across-variables, denoted generally as � , are defined as
variables that can be measured “across” an element (e.g., voltage
drop across a resister or pressure drop across a pipe segment);
and through-variables, denoted generally as f, which are defined
as variables that pass “through” an element unaltered (e.g.,
current passing through a resistor or fluid flow rate through a
pipe). The product of the across- and through-variables gives the
power flow through the element.

 There are also three primary passive single-power-port
element types, and two source element types. Specifically, A-
type and T-type passive energy storage elements whose energy
storage is expressed as a function of their across- and through-
variable, respectively (e.g., electrical capacitors, and inertia
elements are A-type elements; inductors, and springs are T-type
elements). D-type elements are passive energy dissipative
elements whose dissipation can be expressed as a function of
either the across-variable or the through-variable (e.g., electrical
resistors, mechanical damper). A-type and T-type source
elements provide energy to the system in the form of their
across-variable and through-variable, respectively. The
constitutive equations of the three types of single-port passive
elements are given in Table I.

TABLE I. CONSTITUTIVE EQUATIONS OF SINGLE-PORT ELEMENTS.

Element Constitutive Equation Energy/Power Equation
Generalized A-
type � � � ���� � � 	
���

Generalized T-
type � � � ���� � � 	
���

Generalized D-
type � � 	
 � � �
� � � 	
 �� �
��

Additionally, there two types of ideal two-power-port
passive elements, Transformers and Gyrators. These are non-
dissipative elements which convert their variable in magnitude
(a single-domain element, e.g. ideal electrical transformer) or
type (a two-domain element, e.g. DC Motor). In a transformer,
the input variable type is related to the same output variable
type; whereas, in a gyrator the input variable type is related to
the opposite output variable type. The constitutive equations of
two types of two-port elements are given in Table II.

TABLE II. CONSTITUTIVE EQUATIONS OF TWO-PORT ELEMENTS.

Element Constitutive Equations

Transformer �� � ���� �� � �� 	�����

Gyrator �� � ���� �� � �� 	��� ��

It is clear that these elements are not exclusive to just one
energy domain, and are applicable analogously to other energy
domains. Examples of these analogies for the five primary
energy domains of focus are provided in Table III.

B. Linear Graph Methodology
In order to derive a state-space model from an LG model, the

following procedure can be employed:

1. Construct the LG model of the system
2. Derive the independent differential and algebraic equations

from the constitutive, continuity, and compatibility
equations:
a. Construct the normal tree
b. Identify the state- (�), input- (�) and output-variables

(�), and the primary and secondary variables
c. Produce the constitutive equations for each passive

element
d. Construct the continuity equations for each passive

branch
e. Construct the compatibility equations for each loop

formed by including each passive link individually
3. Eliminate the secondary variables through substitution and

construct the state-space model in the standard form:
 �� � �� � �� (1)

 � � �� � �� (2)

III. LGTHEORY MATLAB TOOLBOX

A. LG Model Input
In order to implement LG models in MATLAB, an incidence

matrix representation is utilized. Incidence matrices, commonly
used in graph theory, are sparse matrices used for representing
relationships between two sets of objects. In the case of LG
models, an incidence matrix is used to represent the relationship
between the system elements (as columns) and the system nodes
(as rows). Similarly, the directionality of the system elements is
captured in this representation by a “-1” in the row
corresponding to the node that the element is leaving, and a “1”
in the row corresponding to the node that the element is entering.

Fig. 1 shows a DC motor with an inertial load and
corresponding LG model. This system is a common example
used to demonstrate LG modeling of multi-domain systems and
will be referred to throughout this paper for demonstrating the
algorithms and operations that are performed by the MATLAB
program.

TABLE III. VARIABLES AND ELEMENT TYPES IN THE PRIMARY ENERGY DOMAINS.

Energy Domain Source Elements Storage Elements Dissipating Elements
Across-Variables Through-Variables A-Type T-Type D-Type

Electrical Voltage Current Capacitor Inductor Resistor
Mechanical (Translational) Rectilinear Velocity Force Mass Rectilinear Spring Rectilinear Damper
Mechanical (Rotational) Angular Velocity Torque Rotary Inertia Torsional Spring Torsional Damper
Hydraulic/Fluid Pressure Flow Rate Fluid Capacitor Inertor Fluid Resistor
Thermal Temperature Heat Transfer Rate Thermal Capacitor Thermal Resistor

 943

WedB1.5

�

! "
#$	

(1) (1)

(2) (3) (4) (5)

Fig. 1. Schematic [6] and LG Model of DC Motor with Inertial Load

System.

From the above LG model, the following incidence matrix
can be formed:

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

−−−
−

−
−−

1110000
0001100
0000110
0000011
1111001

5
4
3
2
1

21 JBTFTFLRVs

This matrix is input by the user into MATLAB along with
the type, domain, variable names, and output arrays. These
arrays are used to provide additional information about the
system required to perform the LG operations: the type and
domain arrays use indexing values (see Table IV) to specify the
element type and energy domain corresponding column-wise to
the elements of the incidence matrix; the variable names and
output arrays use symbolic variables via MATLAB’s Symbolic
Toolbox in order to identify the element parameters
corresponding to each column, and to identify the output
variables of interest.

TABLE IV. INDEXES OF ELEMENT TYPES AND ENERGY DOMAINS IN
LGTHEORY.

Index Element Type Index Energy Domain
1 A-Source 1 Electrical
2 A-Type Element 2 Mech. Translational
3 Transformer 3 Mech. Rotational
4 Gyrator 4 Hydraulic/Fluid
5 D-Type Element 5 Thermal
6 T-Type Element
7 T-Source

B. Building the Normal Tree
The normal tree is a sub-graph of the LG model which

connects all nodes of the LG while forming no loops. The
normal tree is important in the LG approach as it allows for
classification of the primary and secondary variables, as well as
for providing a systematic process of identifying independent
(A-types on tree, T-types not on tree) and dependent (A-types
not on tree, T-types on tree) energy storage elements. Elements
that belong to the tree are referred to as branches, while those
excluded from the tree are called links. The algorithm for
constructing the normal tree is provided:

1. Include all across-variable source elements
2. Include as many A-type elements as possible without

forming loops

3. Include branches for two-port elements (transformers and
gyrators): for a transformer, one branch is included; for a
gyrator, either both or no branches are included

4. Include as many D-type elements as possible without
forming loops

5. Include as many T-type elements as possible without
forming loops.

The normal tree resulting from this process for the example
system can be seen in Fig. 2, where the solid and half dashed
lines represent branches and the full dashed lines represent links.

In MATLAB, each element is added to an empty incidence
matrix, representing the normal tree, one at a time and evaluated
to determine whether a loop is formed. In order to detect if a
loop is created, a depth-first search algorithm is performed
which starts at the ground node and searches through the tree; if
the algorithm determines that the same node has been visited
more than once, it is then known that a loop has been detected
in the tree. If a loop is detected, the last element added to the tree
is removed and the process is continued for the remaining
elements.

In the case where the system contains one or more two-port
elements (transformers or gyrators), the number of possible
normal trees that can be created is
%, where & is the number of
two-port elements in the system. In this case, LGtheory selects
the final tree as the tree with the least number of T-type branches
in order to minimize dependent T-type elements.

Applying this process to the example of DC motor with
inertial load results in the following normal tree matrix:

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

−
−

−−

1000000
0001000
0000010
0000011
1001001

5
4
3
2
1

21 JBTFTFLRVs

C. Variable Classification
Once the normal tree of the LG has been constructed, it can

be utilized to assist in the process of variable classification. First,
MATLAB creates two arrays which contain the across- and
through-variables of all the system elements in symbolic form:

 �'()* � +,*-�. ,/00,100,�002�0023 245 (3)

 �'()* � +6* 6/0061006�00��00�300�45 (4)

Similarly, the primary variables are classified as the across-
variables of the branches and the through-variables of the links,
while the secondary variables are classified as the through-
variables of the branches and the across-variables of the links:

 �76897: � +,*-�.00,/006100,�00��00�3 245 (5)

 ;<=>&�97: � +6*006/00,1006�002�0023 �45 (6)

The program then extracts the state variables as a vector
containing the across-variables of the A-type branches, and the
through-variables of the T-type links:

 944

WedB1.5

 � � ?240061@A (7)

The input variables are also extracted in the vector form from
their respective source elements:

 � � +,*-�.5A (8)

D. Constitutive Equations
The constitutive equations of the system are created for all

passive elements. Referring to Table I and Table II, the
constitutive equations of each passive element can be formed.
Once formed, the program rearranges each equation to isolate
for the primary variable associated with that element or its
derivative.

For the example of the DC motor with inertial load, the
constitutive equations are found to be:

�B4�� � 	C 0�4

(9)

�61�� � 	�0,1

 ,/ �
 D 6/

 �3 � � D B3

 ,� � �� D B�

 �� � ��� D 6�

E. Continuity Equations
The continuity equations of an LG model are formed using

the contouring method. This method involves “cutting” around
a node or set of nodes in such a way that only a single branch is
intersected by the contour. This contour can thus be treated in a
similar manner as a junction in Kirchhoff’s Current Law, where
the sum of all through-variables entering and exiting the contour
are equal to zero. A continuity equation is constructed for each
passive branch of the normal tree, were each equation is
rearranged to isolate for the secondary variable of the passive
branch.

�

! "
#$	

(1) (1)

(2) (3) (4) (5)

Fig. 2. Normal Tree of LG Model with a Node Contour.

This method is accomplished in MATLAB through the use
of a depth-first search algorithm performed on the incidence
matrix of the normal tree. Starting at either one of the nodes
attached to the element in question, the algorithm checks for any
other branches connected to the node, and follows each of these
other branches to the next nodes which they are connected to.
This process is repeated until there are no more branches that
can be followed. The nodes that were visited during this process
are now considered to be the nodes contained within the contour.

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

−−−
−

−
−−

1110000
0001100
0000110
0000011
1111001

5
4
3
2
1

21 JBTFTFLRVs

These nodes, identified in MATLAB as their respective
incidence matrix rows, can thus be used to form the continuity
equation. To do this, the rows of the LG incidence matrix
identified as part of the contour are multiplied by the transpose
of (4). The following is an example of this calculation for the
inertial element C of the example LG model. The contour for this
element consists of only node 5; therefore, row 5 of the LG
incidence matrix is used:

 E � +E E E E �	 �	 �	5
FG
GGG
GH 6*6/616����3�4 IJ

JJJ
JK
 (10)

Once solved and rearranged for �4, the continuity equation
for inertial element C is:

 �4 � ��� � �3 (11)

Using the same process, the remaining continuity equations
are written as:

 6/ � 61 (12)

 6� � 61 (13)

F. Compatibility Equations
The compatibility equations of an LG model are constructed

by temporarily including each passive link into the normal tree
and writing the equation of the resulting loop. This method is
treated in a similar manner as a loop in Kirchhoff’s Voltage Law,
where the sum of all across-variables in the loop is equal to zero.
A compatibility equation is constructed for each passive link not
contained in the normal tree, where each equation is rearranged
to isolate for the passive link’s secondary variable.

This method is accomplished in MATLAB by cycling
through each passive link and temporarily adding its
corresponding elemental column into the normal tree matrix.
The same depth-first search algorithm used in constructing the
normal tree is employed in order to find the loop created by the
addition of the link. A vector is constructed which represents the
directionality of the elements leaving each node (1 or -1) while
traveling in a direction around the loop. This vector is multiplied
by a column vector of the across-variables of the elements
contained within the loop and equating the result to zero in order
to form the compatibility equation for the loop. The following is
an example of this process for the inductance element L of the
linear graph; starting at node 3 and following the loop formed
by this link in the counterclockwise direction results in:

 945

WedB1.5

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

−
−

−
−−

1000000
0001100
0000110
0000011
1001001

5
4
3
2
1

21 JBTFTFLRVs

 E � +	 �	 	 	5 L0 ,/,*-�.,�,�

0
M (14)

Once solved and rearranged for ,1, the continuity equation
for inductance element � is:

 ,1 � ,*-�. � ,/ � ,� (15)

Using the same process, the remaining compatibility
equations are found to be:

 B� � B4 (16)

 B3 � B4 (17)

G. Creating the State-Space Matrices
1) State Equation Matrices
With the construction of the constitutive, continuity, and

compatibility equations, a symbolic substitution of the
continuity and compatibility equations into the constitutive
equations is performed in order to reduce the set of equations
and eliminate all the secondary variables.

The substituted constitutive equation are classified into one
of three column vectors depending on the isolated primary
variable associated with the element: vector � for primary
variables of independent storage elements (state variables);
vector N for primary variables of dependent storage elements;
and vector O for primary variables of non-energy storage
elements. These vectors can thus be written as the following
matrix equations:

 �� � P� � QO � RN � S� (18)

 N � T�� � U�� (19)

 O � V� � WO � XN � Y� (20)

The general solution to the state-space equation is formed by
isolating N in (19) and O in (20), and substituting the results into
(18). Once simplified, this process results in the following
general formulation of the state-space model:

 �� � Z� � [� � \�� (21)

where,

 Z � +] � -QX^ � R.T5_`-P � QV^. (22)

 [� +] � -QX^ � R.T5_`-S � QY^. (23)

 \ � +] � -QX^ � R.T5_`-R � QX^.U (24)

and,

 X^ � +] � W5_`X (25)

 V^ � +] � W5_`V (26)

 Y^ � +] � W5_`Y (27)

Depending on the system being evaluated, this general
solution can be simplified in the following two scenarios:

1. If the system contains no dependent energy storage
elements (i.e. N � a), the general solution can be
simplified by eliminating R, T, U and X. This results in
the following state-space model matrices:

 Z � P � QV^ (28)

 [� S � QY^ (29)

2. If the system contains dependent energy storage elements
(i.e. N b a. but contains no input derivatives (i.e. �� � a),
the general solution can be simplified by eliminating U.
This results in the elimination of the \ matrix, while Z and [are calculated using (22) and (23), respectively.

For the example system, the MATLAB program determines
from the normal tree that there are no dependent energy storage
elements (� � E), meaning that this system falls into scenario 1
described above. The MATLAB program subsequently extracts
the necessary matrices and performs calculations for the state-
space matrices using (28) and (29), to obtain:

 Z � FGG
H ��C ��C���� �
�IJ

JK [� cE	�d (30)

2) Output Equation Matricies
The output equations are constructed as an algebraic

relationship between the variables of interest, as defined by the
user in the output array, and the state and input variables. This
is achieved in MATLAB by examining the continuity and
compatibility equations, as well as, the substituted constitutive
equations from the previous section, and selecting equations that
can isolate the desired output variables. Once these equations are
identified, substitution and manipulation operations are
conducted in order to express the output variables exclusively in
terms of the state and input variables; the e and f matrices are
thus extracted from these equations.

For the example system, the variables of interest will be the
current supplied to the motor, the torque output by the motor,
and the rotational velocity of the inertial load. A corresponding
output array is defined as:

 � � ?6�00��0024@A (31)

For these output variables, the following e and f matrices
are determined:

 e � cE 	E ���	 E d f � E (32)

 946

WedB1.5

IV. RESULTS AND DISCUSSION
In order to validate the results generated by the LGtheory

Toolbox, the state-space matrices produced by the program
were simulated in MATLAB using commands from the
Control System Toolbox. An identical system of a DC motor
with an inertial load was modeled and simulated in Simscape,
a dynamic system modeling library within the Simulink
environment. Both simulations were conducted with reference
to the parameter values obtained from a similar system in [13]
and a step input of 12V for the voltage source.

From these graphs, a strong conformance between the two
results can be observed, as seen in Fig. 3. Likewise,
calculations of the error between the two results show that the
difference between data points of each simulation is
negligible. These observations demonstrate that the LGtheory
Toolbox is capable of producing accurate and reliable state-
space models of multi-energy domain dynamic systems.

V. CONCLUSION
The Linear Graph (LG) approach is a powerful tool for

modeling complex, multi-physics dynamic systems spanning
multiple energy domains. While in the past there have been
examples of software tools capable of formulating LG models,
most of these programs are no longer available for the
purposes of direct research and education related to the LG
approach. The LGtheory MATLAB Toolbox fills this gap by
providing a complete and robust method of formulating LG
models in the MATLAB software environment. For the
example system of the DC motor with inertial load presented
in this paper, LGtheory was able to produce an accurate state-
space model which was validated via a comparative
simulation with Simscape. The results of this comparison
demonstrated strong conformance between the LGtheory and
Simscape methods.

Fig. 3. MATLAB Simulation vs. Simscape Simulation Results.

ACKNOWLEDGMENT
This research was partially funded by the Natural Sciences

and Engineering Research Council of Canada (NSERC)
through the Discovery Grant Program (RGPIN-2017-05762).
The authors appreciate the support of their sponsors.

REFERENCES
[1] C. W. de Silva, "Linear Graphs," in Modeling of Dynamic Systems -

With Engineering Applications, Boca Raton, Taylor & Francis, CRC
Press, 2018, pp. 199-391.

[2] C. Schemike, K. Morency and J. McPhee, "Using Graph Theory and
Symbolic Computing to Generate Efficient Models for Multi-Body
Vehicle Dynamics," Proceedings of the Institution of Mechanical
Engineers. Part K, Journal of multi-body dynamics, vol. 222, no. 4, pp.
339-352, 2008.

[3] H. M. Paynter, Analysis and Design of Engineering Systems, Boston:
The M.I.T. Press, 1961.

[4] H. E. Koenig and W. A. Blackwell, "Linear Graph Theory - A
Fundamental Engineering Discipline," IRE Transactions on Education,
vol. 3, no. 2, pp. 42-49, 1960.

[5] Massachusetts Institute of Technology, Department of Mechanical
Engineering, "Linear Graph Modeling: One-Port Elements," 2004.

[6] Massachusetts Institute of Technology, Department of Mechanical
Engineering, "Linear Graph Modeling: Two-Port Energy Transducing
Elements," 2003.

[7] Massachusetts Institute of Technology, Department of Mechanical
Engineering, "Linear Graph Modeling: State Equation Formulation,"
2004.

[8] J. McPhee, C. Schmitke and S. Redmond, "Dynamic modelling of
mechatronic multibody systems with symbolic computing and linear
graph theory," Mathematical and Computer Modelling of Dynamical
Systems, vol. 10, no. 1, pp. 1-23, 2004.

[9] T. -S. Dao and J. McPhee, "Dynamic modeling of electrochemical
systems using linear graph theory," Journal of Power Sources, vol. 196,
no. 23, pp. 104442-10454, 2011.

[10] J. Banerjee and J. McPhee, "System dynamic modelling and simulation
of hydrodynamic machines," Mathematical and Computer Modelling
of Dynamical Systems, vol. 22, no. 1, pp. 54-86, 2015.

[11] W. K. Durfee, M. B. Wall, D. Rowell and F. K. Abbott, "Interactive
Software for Dynamic System Modeling Using Linear Graphs," IEEE
Control Systems Magazine, vol. 11, no. 4, pp. 60-66, 1991.

[12] C. de Silva, "Some Generalisations of Linear-Graph Modelling for
Dynamic Systems," International Journal of Control, vol. 86, no. 11,
pp. 1990-2005, 2013.

[13] R. A. R. Picone, "Dynamic Systems: An Introduction," 2018. [Online].
Available:
http://ricopic.one/dynamic_systems/dynamic_systems_partial.pdf.
[Accessed August 2018].

 947

WedB1.5

