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Abstract—This paper presents a new MATLAB-based 
software toolbox, called LGtheory, which provides a robust and 
automated method of evaluating Linear Graph (LG) models of 
multi-domain engineering systems for the primary energy 
domains (electrical, mechanical, hydraulic, and thermal). The 
necessary background on the major concepts of LG approach is 
presented along with a description of how the different LG 
processes are automated using MATLAB software. These 
processes are demonstrated through the extraction of the state-
space model of an example system consisting of a DC motor with 
an inertial load. The results of this system output by the LGtheory 
Toolbox are simulated and compared against the same model as 
constructed in Simulink Simscape. This comparison demonstrates 
that LGtheory is capable of producing accurate state-space models 
of multi-domain dynamic systems.  

Keywords—linear graph approach, state-space modeling, multi-
domain systems, multi-physics models, MATLAB toolbox, dynamic 
system modeling, mechatronic systems. 

I. INTRODUCTION 
Multi-energy domain engineering systems play an 

increasingly critical role in our daily lives. Systems that at one 
point may have been purely mechanical or electrical in nature 
may now span one or more additional energy domains. This can 
be seen in classical fields of engineering such as automotive, 
aviation, and power generation, but is also inherent in more 
modern fields of engineering such as robotics, mechatronics, 
and automation. While these multi-domain and multi-physics 
systems allow for additional accuracy and more robust control, 
they also add to the complexity of designing, modeling, and 
simulating such systems. 

The Linear Graph (LG) approach is a robust method of 
multi-domain dynamic system modeling which is systematic, 
unique, unified, and integrated. This means that the LG 
approach provides a well-defined method across multiple 
energy domains which produces a unique model of the evaluated 
multi-domain system, using methodologies that are analogous 
across the domains while considering the entire system 
concurrently [1]. This method is derived from graph theory, 
invented in 1736 by Leonhard Euler in order to solve a problem 
known as the Seven Bridges of Königsberg [2]; however, the 
formal LG approach itself was born through the work of Paynter 
[3] in the 1950s and 1960s at the Massachusetts Institute of 
Technology (MIT), as a precursor to his developments in bond 
graphs. The first form of LG approach was applied to 
engineering systems for the purpose of modeling large electrical 
networks before extending these principles to other energy 

domains in the 1960s; before this unification, modeling of 
different energy domains would require vastly different 
approaches [4]. Traditionally, while the LG approach is often 
applied to the electrical, mechanical, hydraulic, and thermal 
domains [5, 6, 7], this modeling method has also proven to be 
suitable for a wide range of additional domains including 
multibody [8], electrochemical [9], hydrodynamic [10], and 
many more. 

While the LG approach is relatively easy to perform 
manually for low-order systems, it is beneficial to automate this 
process in order to evaluate larger, more complex, multi-domain 
systems. In the past, there have been some examples of software 
packages with the purpose of evaluating LG models; these 
programs include Lgraph, developed at MIT in the 1990s [11], 
DynaFlexPro, developed at the University of Waterloo in the 
mid 2000s [2, 8], and LG2ss developed at the University of 
British Columbia in the 2010s [12]. Unfortunately, the Lgraph 
software was only available on MIT workstation computers, and 
was never released publically or further maintained for modern 
operating systems. Likewise, DynaFlexPro has since been 
incorporated into the MapleSim software package, and while the 
underlying technology is based on LG approach, the program 
does not represent systems in an LG format. LG2ss was an effort 
in generalizing the LG approach, but it too was not refined or 
made publicly available. The main goal of the MATLAB-based 
LGtheory Toolbox presented in this paper is to provide a tool for 
automated development and evaluation of LG models, 
particularly facilitating education and research. 

II. STATE-SPACE MODELING BY LG APPROACH 

A. Background 
The LG approach provides a method of simplifying complex 

dynamic systems in the form of minimalistic graphical 
representations in order to facilitate the creation of state-space 
models. State-space modeling methods, such as the LG 
approach, are often preferred by engineers over traditional 
mathematical techniques as they provide a relatively simple and 
algorithmic process which eliminates much of the complexity of 
deriving such mathematical models. 

An LG model represents a dynamic system as a collection of 
interconnected lines and consists primarily of two main 
components: branches, which are directional line segments that 
represent either passive or source type system elements; and 
nodes, which represent physical connections between system 
elements. 
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Two variable types are considered in the LG approach: 
Across-variables, denoted generally as � , are defined as 
variables that can be measured “across” an element (e.g., voltage 
drop across a resister or pressure drop across a pipe segment); 
and through-variables, denoted generally as f, which are defined 
as variables that pass “through” an element unaltered (e.g., 
current passing through a resistor or fluid flow rate through a 
pipe). The product of the across- and through-variables gives the 
power flow through the element. 

 There are also three primary passive single-power-port 
element types, and two source element types. Specifically, A-
type and T-type passive energy storage elements whose energy 
storage is expressed as a function of their across- and through-
variable, respectively (e.g., electrical capacitors, and inertia 
elements are A-type elements; inductors, and springs are T-type 
elements). D-type elements are passive energy dissipative 
elements whose dissipation can be expressed as a function of 
either the across-variable or the through-variable (e.g., electrical 
resistors, mechanical damper). A-type and T-type source 
elements provide energy to the system in the form of their 
across-variable and through-variable, respectively. The 
constitutive equations of the three types of single-port passive 
elements are given in Table I. 

TABLE I.  CONSTITUTIVE EQUATIONS OF SINGLE-PORT ELEMENTS. 

Element Constitutive Equation Energy/Power Equation 
Generalized A-
type � � � ����  � � 	
��� 

Generalized T-
type � � � ����  � � 	
��� 

Generalized D-
type � � 	
 � � � 
� � � 	
 �� � 
�� 

Additionally, there two types of ideal two-power-port 
passive elements, Transformers and Gyrators. These are non-
dissipative elements which convert their variable in magnitude 
(a single-domain element, e.g. ideal electrical transformer) or 
type (a two-domain element, e.g. DC Motor). In a transformer, 
the input variable type is related to the same output variable 
type; whereas, in a gyrator the input variable type is related to 
the opposite output variable type. The constitutive equations of 
two types of two-port elements are given in Table II. 

TABLE II.  CONSTITUTIVE EQUATIONS OF TWO-PORT ELEMENTS. 

Element Constitutive Equations 

Transformer �� � ���� �� � �� 	����� 

Gyrator �� � ���� �� � �� 	��� �� 

It is clear that these elements are not exclusive to just one 
energy domain, and are applicable analogously to other energy 
domains. Examples of these analogies for the five primary 
energy domains of focus are provided in Table III. 

B. Linear Graph Methodology 
In order to derive a state-space model from an LG model, the 

following procedure can be employed: 

1. Construct the LG model of the system 
2. Derive the independent differential and algebraic equations 

from the constitutive, continuity, and compatibility 
equations: 
a. Construct the normal tree 
b. Identify the state- (�), input- (�) and output-variables 

(�), and the primary and secondary variables 
c. Produce the constitutive equations for each passive 

element 
d. Construct the continuity equations for each passive 

branch 
e. Construct the compatibility equations for each loop 

formed by including each passive link individually 
3. Eliminate the secondary variables through substitution and 

construct the state-space model in the standard form: 
 �� � �� � �� (1) 

 � � �� � �� (2) 

III. LGTHEORY MATLAB TOOLBOX 

A. LG Model Input 
In order to implement LG models in MATLAB, an incidence 

matrix representation is utilized. Incidence matrices, commonly 
used in graph theory, are sparse matrices used for representing 
relationships between two sets of objects. In the case of LG 
models, an incidence matrix is used to represent the relationship 
between the system elements (as columns) and the system nodes 
(as rows). Similarly, the directionality of the system elements is 
captured in this representation by a “-1” in the row 
corresponding to the node that the element is leaving, and a “1” 
in the row corresponding to the node that the element is entering. 

Fig. 1 shows a DC motor with an inertial load and 
corresponding LG model. This system is a common example 
used to demonstrate LG modeling of multi-domain systems and 
will be referred to throughout this paper for demonstrating the 
algorithms and operations that are performed by the MATLAB 
program. 

 

 

TABLE III.  VARIABLES AND ELEMENT TYPES IN THE PRIMARY ENERGY DOMAINS. 

Energy Domain Source Elements  Storage Elements  Dissipating Elements 
Across-Variables Through-Variables A-Type T-Type D-Type 

Electrical Voltage Current Capacitor Inductor Resistor 
Mechanical (Translational) Rectilinear Velocity Force Mass Rectilinear Spring Rectilinear Damper 
Mechanical (Rotational) Angular Velocity Torque Rotary Inertia Torsional Spring Torsional Damper 
Hydraulic/Fluid Pressure Flow Rate Fluid Capacitor Inertor Fluid Resistor 
Thermal Temperature Heat Transfer Rate Thermal Capacitor  Thermal Resistor 
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(1) (1)

(2) (3) (4) (5)

 
Fig. 1. Schematic [6] and LG Model of DC Motor with Inertial Load 

System. 

From the above LG model, the following incidence matrix 
can be formed: 

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

−−−
−

−
−−

1110000
0001100
0000110
0000011
1111001

5
4
3
2
1

21 JBTFTFLRVs

 

This matrix is input by the user into MATLAB along with 
the type, domain, variable names, and output arrays. These 
arrays are used to provide additional information about the 
system required to perform the LG operations: the type and 
domain arrays use indexing values (see Table IV) to specify the 
element type and energy domain corresponding column-wise to 
the elements of the incidence matrix; the variable names and 
output arrays use symbolic variables via MATLAB’s Symbolic 
Toolbox in order to identify the element parameters 
corresponding to each column, and to identify the output 
variables of interest. 

TABLE IV.  INDEXES OF ELEMENT TYPES AND ENERGY DOMAINS IN 
LGTHEORY. 

Index Element Type  Index Energy Domain 
1 A-Source  1 Electrical 
2 A-Type Element  2 Mech. Translational 
3 Transformer  3 Mech. Rotational 
4 Gyrator  4 Hydraulic/Fluid 
5 D-Type Element  5 Thermal 
6 T-Type Element    
7 T-Source    

B. Building the Normal Tree 
The normal tree is a sub-graph of the LG model which 

connects all nodes of the LG while forming no loops. The 
normal tree is important in the LG approach as it allows for 
classification of the primary and secondary variables, as well as 
for providing a systematic process of identifying independent 
(A-types on tree, T-types not on tree) and dependent (A-types 
not on tree, T-types on tree) energy storage elements. Elements 
that belong to the tree are referred to as branches, while those 
excluded from the tree are called links. The algorithm for 
constructing the normal tree is provided: 

1. Include all across-variable source elements 
2. Include as many A-type elements as possible without 

forming loops 

3. Include branches for two-port elements (transformers and 
gyrators): for a transformer, one branch is included; for a 
gyrator, either both or no branches are included 

4. Include as many D-type elements as possible without 
forming loops 

5. Include as many T-type elements as possible without 
forming loops. 

The normal tree resulting from this process for the example 
system can be seen in Fig. 2, where the solid and half dashed 
lines represent branches and the full dashed lines represent links. 

In MATLAB, each element is added to an empty incidence 
matrix, representing the normal tree, one at a time and evaluated 
to determine whether a loop is formed. In order to detect if a 
loop is created, a depth-first search algorithm is performed 
which starts at the ground node and searches through the tree; if 
the algorithm determines that the same node has been visited 
more than once, it is then known that a loop has been detected 
in the tree. If a loop is detected, the last element added to the tree 
is removed and the process is continued for the remaining 
elements. 

In the case where the system contains one or more two-port 
elements (transformers or gyrators), the number of possible 
normal trees that can be created is 
%, where & is the number of 
two-port elements in the system. In this case, LGtheory selects 
the final tree as the tree with the least number of T-type branches 
in order to minimize dependent T-type elements. 

Applying this process to the example of DC motor with 
inertial load results in the following normal tree matrix: 

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

−
−

−−

1000000
0001000
0000010
0000011
1001001

5
4
3
2
1

21 JBTFTFLRVs

 

C. Variable Classification 
Once the normal tree of the LG has been constructed, it can 

be utilized to assist in the process of variable classification. First, 
MATLAB creates two arrays which contain the across- and 
through-variables of all the system elements in symbolic form: 

 �'()* � +,*-�. ,/00,100,�002�0023 245 (3) 

 �'()* � +6* 6/0061006�00��00�300�45 (4) 

Similarly, the primary variables are classified as the across-
variables of the branches and the through-variables of the links, 
while the secondary variables are classified as the through-
variables of the branches and the across-variables of the links: 

 �76897: � +,*-�.00,/006100,�00��00�3 245 (5) 

 ;<=>&�97: � +6*006/00,1006�002�0023 �45 (6) 

The program then extracts the state variables as a vector 
containing the across-variables of the A-type branches, and the 
through-variables of the T-type links: 
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 � � ?240061@A (7) 

The input variables are also extracted in the vector form from 
their respective source elements: 

 � � +,*-�.5A (8) 

D. Constitutive Equations 
The constitutive equations of the system are created for all 

passive elements. Referring to Table I and Table II, the 
constitutive equations of each passive element can be formed. 
Once formed, the program rearranges each equation to isolate 
for the primary variable associated with that element or its 
derivative. 

For the example of the DC motor with inertial load, the 
constitutive equations are found to be: 

 
�B4�� � 	C 0�4  

(9) 

 
�61�� � 	�0,1 

 ,/ � 
 D 6/  

 �3 � � D B3  

 ,� � �� D B� 

 �� � ��� D 6� 

E. Continuity Equations 
The continuity equations of an LG model are formed using 

the contouring method. This method involves “cutting” around 
a node or set of nodes in such a way that only a single branch is 
intersected by the contour. This contour can thus be treated in a 
similar manner as a junction in Kirchhoff’s Current Law, where 
the sum of all through-variables entering and exiting the contour 
are equal to zero. A continuity equation is constructed for each 
passive branch of the normal tree, were each equation is 
rearranged to isolate for the secondary variable of the passive 
branch. 

� 

! "
#$	 


(1) (1)

(2) (3) (4) (5)

 
Fig. 2. Normal Tree of LG Model with a Node Contour. 

This method is accomplished in MATLAB through the use 
of a depth-first search algorithm performed on the incidence 
matrix of the normal tree. Starting at either one of the nodes 
attached to the element in question, the algorithm checks for any 
other branches connected to the node, and follows each of these 
other branches to the next nodes which they are connected to. 
This process is repeated until there are no more branches that 
can be followed. The nodes that were visited during this process 
are now considered to be the nodes contained within the contour. 

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

−−−
−

−
−−

1110000
0001100
0000110
0000011
1111001

5
4
3
2
1

21 JBTFTFLRVs

 

These nodes, identified in MATLAB as their respective 
incidence matrix rows, can thus be used to form the continuity 
equation. To do this, the rows of the LG incidence matrix 
identified as part of the contour are multiplied by the transpose 
of (4). The following is an example of this calculation for the 
inertial element C of the example LG model. The contour for this 
element consists of only node 5; therefore, row 5 of the LG 
incidence matrix is used: 

 E � +E E E E �	 �	 �	5
FG
GGG
GH 6*6/616����3�4 IJ

JJJ
JK
 (10) 

Once solved and rearranged for �4, the continuity equation 
for inertial element C is: 

 �4 � ��� � �3  (11) 

Using the same process, the remaining continuity equations 
are written as: 

 6/ � 61 (12) 

 6� � 61 (13) 

F. Compatibility Equations 
The compatibility equations of an LG model are constructed 

by temporarily including each passive link into the normal tree 
and writing the equation of the resulting loop. This method is 
treated in a similar manner as a loop in Kirchhoff’s Voltage Law, 
where the sum of all across-variables in the loop is equal to zero. 
A compatibility equation is constructed for each passive link not 
contained in the normal tree, where each equation is rearranged 
to isolate for the passive link’s secondary variable. 

This method is accomplished in MATLAB by cycling 
through each passive link and temporarily adding its 
corresponding elemental column into the normal tree matrix. 
The same depth-first search algorithm used in constructing the 
normal tree is employed in order to find the loop created by the 
addition of the link. A vector is constructed which represents the 
directionality of the elements leaving each node (1 or -1) while 
traveling in a direction around the loop. This vector is multiplied 
by a column vector of the across-variables of the elements 
contained within the loop and equating the result to zero in order 
to form the compatibility equation for the loop. The following is 
an example of this process for the inductance element L of the 
linear graph; starting at node 3 and following the loop formed 
by this link in the counterclockwise direction results in: 
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 E � +	 �	 	 	5 L0 ,/,*-�.,�,�

0
M (14) 

Once solved and rearranged for ,1, the continuity equation 
for inductance element � is: 

 ,1 � ,*-�. � ,/ � ,� (15) 

Using the same process, the remaining compatibility 
equations are found to be: 

 B� � B4 (16) 

 B3 � B4 (17) 

G. Creating the State-Space Matrices 
1) State Equation Matrices 
With the construction of the constitutive, continuity, and 

compatibility equations, a symbolic substitution of the 
continuity and compatibility equations into the constitutive 
equations is performed in order to reduce the set of equations 
and eliminate all the secondary variables. 

The substituted constitutive equation are classified into one 
of three column vectors depending on the isolated primary 
variable associated with the element: vector �  for primary 
variables of independent storage elements (state variables); 
vector N for primary variables of dependent storage elements; 
and vector O  for primary variables of non-energy storage 
elements. These vectors can thus be written as the following 
matrix equations: 

 �� � P� � QO � RN � S� (18) 

 N � T�� � U��  (19) 

 O � V� � WO � XN � Y� (20) 

The general solution to the state-space equation is formed by 
isolating N in (19) and O in (20), and substituting the results into 
(18). Once simplified, this process results in the following 
general formulation of the state-space model: 

 �� � Z� � [� � \��  (21) 

where, 

 Z � +] � -QX^ � R.T5_`-P � QV^. (22) 

 [ � +] � -QX^ � R.T5_`-S � QY^. (23) 

 \ � +] � -QX^ � R.T5_`-R � QX^.U (24) 

and, 

 X^ � +] � W5_`X (25) 

 V^ � +] � W5_`V (26) 

 Y^ � +] � W5_`Y (27) 

Depending on the system being evaluated, this general 
solution can be simplified in the following two scenarios: 

1. If the system contains no dependent energy storage 
elements (i.e. N � a ), the general solution can be 
simplified by eliminating R, T, U and X. This results in 
the following state-space model matrices: 

 Z � P � QV^ (28) 

 [ � S � QY^ (29) 

2. If the system contains dependent energy storage elements 
(i.e. N b a. but contains no input derivatives (i.e. �� � a), 
the general solution can be simplified by eliminating U. 
This results in the elimination of the \ matrix, while Z and [ are calculated using (22) and (23), respectively. 

For the example system, the MATLAB program determines 
from the normal tree that there are no dependent energy storage 
elements (� � E), meaning that this system falls into scenario 1 
described above. The MATLAB program subsequently extracts 
the necessary matrices and performs calculations for the state-
space matrices using (28) and (29), to obtain: 

 Z � FGG
H ��C ��C���� �
�IJ

JK [ � cE	�d (30) 

2) Output Equation Matricies 
The output equations are constructed as an algebraic 

relationship between the variables of interest, as defined by the 
user in the output array, and the state and input variables. This 
is achieved in MATLAB by examining the continuity and 
compatibility equations, as well as, the substituted constitutive 
equations from the previous section, and selecting equations that 
can isolate the desired output variables. Once these equations are 
identified, substitution and manipulation operations are 
conducted in order to express the output variables exclusively in 
terms of the state and input variables; the e and f matrices are 
thus extracted from these equations.  

For the example system, the variables of interest will be the 
current supplied to the motor, the torque output by the motor, 
and the rotational velocity of the inertial load. A corresponding 
output array is defined as: 

 � � ?6�00��0024@A (31) 

For these output variables, the following e and f matrices 
are determined: 

 e � cE 	E ���	 E d f � E (32) 
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IV. RESULTS AND DISCUSSION 
In order to validate the results generated by the LGtheory 

Toolbox, the state-space matrices produced by the program 
were simulated in MATLAB using commands from the 
Control System Toolbox. An identical system of a DC motor 
with an inertial load was modeled and simulated in Simscape, 
a dynamic system modeling library within the Simulink 
environment. Both simulations were conducted with reference 
to the parameter values obtained from a similar system in [13] 
and a step input of 12V for the voltage source. 

From these graphs, a strong conformance between the two 
results can be observed, as seen in Fig. 3. Likewise, 
calculations of the error between the two results show that the 
difference between data points of each simulation is 
negligible. These observations demonstrate that the LGtheory 
Toolbox is capable of producing accurate and reliable state-
space models of multi-energy domain dynamic systems. 

V. CONCLUSION 
The Linear Graph (LG) approach is a powerful tool for 

modeling complex, multi-physics dynamic systems spanning 
multiple energy domains. While in the past there have been 
examples of software tools capable of formulating LG models, 
most of these programs are no longer available for the 
purposes of direct research and education related to the LG 
approach. The LGtheory MATLAB Toolbox fills this gap by 
providing a complete and robust method of formulating LG 
models in the MATLAB software environment. For the 
example system of the DC motor with inertial load presented 
in this paper, LGtheory was able to produce an accurate state-
space model which was validated via a comparative 
simulation with Simscape. The results of this comparison 
demonstrated strong conformance between the LGtheory and 
Simscape methods. 

 
Fig. 3. MATLAB Simulation vs. Simscape Simulation Results. 
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